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Chaotic dynamics due to competition among degenerate modes
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Competition between two degenerate spatial modes in a ring-cavity laser is shown to lead to chaotic time evolution of their
amplitudes. Analysis of this temporal chaos implies that the laser output will show randomly intermittent bursts of apparent
spatial complexity due to interference between the two competing modes.

1. Introduction

The nonlinear dynamics of a ring—cavity laser is generally characterized by competition among modes that
describe the spatial structure of the fields [1,2]. This competition appears experimentally in the measurement
of time-dependent transverse spatial patterns in the laser intensity output [3]. In some cases, the ring—cavity
resonator geometry can be adjusted, or tuned, to produce two degenerate modes, i.e. two modes with equal
longitudinal wave numbers [1,2]. In the case of such a degeneracy, the dynamics of the mode competition
simplifies to a system of ordinary differential equations for the time-dependent complex amplitudes of the two
cavity modes (i.e., the transverse spatial structures of the fields). In this case, rigorous dynamical systems
methods can be applied to exactly characterize the chaotic dynamics that results for the mode amplitudes. We
show that this is a purely temporal type of chaos, although it manifests itself experimentally as chaotically
changing transverse spatial patterns in the laser intensity output.

The geometry for a ring-cavity laser experiment with degenerate modes consists of a resonant cavity with
curved end mirrors [1-3]. The ring-cavity laser dynamics is described by the Maxwell-Bloch equations for
the slowly varying complex envelopes E and P of the electric field, §=Re{E exp[i(koz—wot)]}, the polar-
izability of the medium, 2 =Re{P exp[i(koz—wyt) ]} and the real level inversion, D. Here &, and @, are the
wave number and frequency of the incident light. The Maxwell-Bloch equations are given by [1,2]
-LUVZE+ %—f + %—f =P, %) =ED—0P, %? =—Re(E*P)—-d(D-Dy),
where V3 denotes the transverse Laplacian, longitudinal distance z is measured in units of A4 (the optical path
length), time is measured in units of the round-trip time for light, 4/c, and the small parameter d=y4/c< 1
is the ratio of time scales: the round-trip time for light in the cavity, divided by the relaxation time of the
medium. By choosing to scale time in units of 4/c and setting =0, we address dynamics on the nondissipative
time scale, i.e., on a time scale which is short compared to any dissipation time.

We assume separation of variables for the solution of the linearly polarized electric field in the resonant cav-
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ity. Because these cavity modes are taken to be degenerate in longitudinal wave number, we may assume a
solution in the form E(r, 6, z, t) =2,4,(r, 0, z) E,(t), where A,(r, 0, z) describes the spatial structure of the /th
empty-cavity field mode. That is, 4,(r, 6, z) is the /th eigenfunction in the cavity of the spatial part of the linear
operator in the first Maxwell-Bloch equation (see, e.g., ref. [2], appendix A). Similar modal expansions are
also assumed for the fields P and D. Substituting these three modal expansions into the Maxwell-Bloch equa-
tions and projecting onto the /th degenerate mode yields the following set of coupled Maxwell-Bloch (CMB)
equations, labeled by indices /, m, n=1, ..., L,

EI=P15 PI=ZFImnEmDn’ D.1=-—RC(ZF1M,,E:,P"). (1)

In these CMB equations I, = [ cavity 414mA,. Consequently, the real arrays of constants I',,, describing the
coupling among the modes are totally symmetric tensors. That is, I'},., =1 mn) Of every permutation o of /,
m, and n.

2. Diagonalization of the modal equations

The CMB equations (1) derived above possess L constants of motion, K;=12 .. I EmEx+D,, I=1, ..,
L. The conserved quantity K is the projection onto the /th mode of the sum of the total field energy and atomic
excitation energy, 1| E|2+D. Since K, is linear in D; we may use it to eliminate D, and thereby reduce the num-
ber of equations from 5L to 4L. After this elimination, we have

EI=PI; P[= 2 I:FlmnEm (Kn_% z anquE;):I .
mn prq

These equations_ describe a set of L coupled complex Duffing oscillators. They may be expressed in Hamil-

tonian form as E,={E, H}=20H/dP} and P,={P, H}=28H/dE?}, with Hamiltonian function

2.
H=;I:HPIIZ_"%(K[_%znmnEmE:):I- (2)

Now, 2H=73, (| P;|>+D?), in terms of the original variables. Hence, conservation of H for the Duffing os-
cillator system represents preservation of the total unitarity of the system by the CMB dynamics (see ref. [4]).
Invariance of the Hamiltonian H under the overall phase shift (P, E;)— (e'*P,, ¢'E,) also implies conservation
of its infinitesimal generator, J=2, Im(E7 P;). This conserved quantity is the total self-interaction energy of
the L modes.

Consider the situation in which the coupling coefficients I, mutually commute, i.e., suppose

; (Flmnrlpq_rlmqnpn) =0.

Then the total Hamiltonian, H in eq. (2), may be diagonalized. This diagonalization of H may be understood
by regarding I, as a set of L symmetric matrices, written I"{!),. The commutation formula above means that
the symmetric matrices "’ and I'Y) commute for all / and j. Hence, in this situation, a single orthogonal L X L
matrix, O,,, exists that simultaneously diagonalizes all the I" matrices. Because of the total symmetry of the
tensors I7,,,, which is preserved under orthogonal transformations, the only nonzero entry remaining in the
Jjth tensor I'V? after such a diagonalization is I'{’ =y;. Performing this orthogonal transformation on the fields
E,and P, and on the constants K, (E,, P, K}) > (E}, P}, K)) = (2 OmEn, Zm OtnPrms 2m OimK,,), yields the
Hamiltonian for the system in the new variables (after dropping the primes) in diagonalized form,
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H= ;H1= Z (1P I2+ 3 (K~ 4n | E1%)?] .

Thus, the Hamiltonian decouples into a sum of L complex-Duffing-oscillator Hamiltonians, provided the cou-
pling coefficients I, mutually commute as symmetric matrices. In this case, the conserved Hamiltonians H,
of the decoupled modes are the projections of the unitarity condition for the full system onto each mode.

This diagonalization renders each Hamiltonian H, invariant under an independent phase change of the /th
fields: (E, P;)— (eE, ¢*'P,). Hence, the self-interaction energy for each mode, J,=Im(ETP)), is separately
conserved. These additional conservation laws imply that the dynamics of each decoupled Hamiltonian sub-
system is completely integrable. Therefore, the entire system of L interacting ring-cavity modes is completely
integrable when the coupling coefficients mutually commute.

3. The integrable decoupled model

The Hamiltonian and the conserved self-interaction energy for a single decoupled mode are given by
Hi=4\|P |+ 5(K,— {7 E/*)? Ji=Im(EIP),

where conservation of J; follows from phase invariance of H, This phase invariance suggests the canonical
transformation to polar coordinates given by E;= 2,¢' and P,= (#+iJ,/ %) ¢'“. When expressed in these polar
coordinates, the single-mode Hamiltonian is independent of ¢,

H/=}P7+J7/22} +§(K,—4y,27)*,
and Hamilton’s equations for (2, 2, ¢, J;) are given by
2={9,H}=2, P={(P, H}=09%K -4y 2})+J3/2}, @={0, H}=J//2}, Ji={J,,H}=0.

In the case J;=0 and K,>0, and only in this case, the solutions of this system have a homoclinic orbit in the
2%, phase plane. In the original variables, the homoclinic solution of egs. (1) for J;=0 and K;>0 is given
by

E;=2/K/y sech[\/Kiy (1~1;)] €7, P;=—2K;sech[\/Kiy; (t—1,)] tanh[/K;y; (1—1;)] €.

This solution connects the hyperbolic point at the origin, E,=0=P, to itself. Geometrically the solution is a
“pinched torus,” i.e., the Cartesian product of a homoclinic loop in a plane ¢, =@, (which is constant for J;=0),
times a circle parameterized by the value of phase angle @. For J,#0, all other solutions are periodic in the
9%, phase plane and, thus, are quasiperiodic with two periods in the original variables. See ref. [4] for further
details.

4. Recoupling the modes

In general, the coupling coefficients I7,,,, do not mutually commute. Of particular interest is the situation in
which they nearly commute, and are expressible as I',,,,,= /0 mn + €4jpnn, Where 8y,,,,= 1, if I=m=n, and vanishes
otherwise. The coefficients 4,,,, are assumed not to mutually commute with all the I},,,, and € is taken to be
the small uniform coupling strength; € << 1. We treat this situation as a nearly integrable problem, and ask what
physical consequences arise when the coupling perturbation breaks integrability.

We consider the case of two coupled modes, L=2, which is the case most frequently encountered in ex-
periments. Suppose the unperturbed modes before coupling have J, =0, K, >0, and J,#0, so we are coupling
a homoclinic structure in mode 1 with the quasiperiodic structure of mode 2, see fig. 1. Except for the ho-
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>

£ Fig. 1. The homoclinic CMB solutions in the two-mode phase
space can be regarded geometrically as a pinched torus (mode 1)
crossed into a two-torus (mode 2).

moclinic orbits, most solutions in this case are quasiperiodic with four (i.e., 2L) frequencies. Thus, the pure
second mode is a special solution, since it has only two frequencies. In the system of two modes, the solution
corresponding to the pure second mode is hyperbolic; that is, it is unstable along the homoclinic orbits of the
first mode. As a two-frequency quasiperiodic solution, the pure second mode can be thought of as a two-torus,
and the unperturbed solutions homoclinic to it in the full phase space can be regarded geometrically as a pinched
torus, crossed into the two-torus of the pure second mode, as shown in fig. 1. Therefore, the unperturbed orbits
homoclinic to a particular pure second mode solution (for a particular choice of J, and K,) form a four-di-
mensional homoclinic surface.

In the weakly coupled case, €#0, most of the special solutions with just two frequencies still persist and are
O(¢) close to the pure second-mode solutions. Moreover, the unstable directions of these perturbed solutions
with only two frequencies are O(¢) close to the homoclinic directions of the unperturbed pure first-mode so-
lution. (The validity of these claims follows from the persistence theory of normally hyperbolic manifolds and
the KAM theorem, see, e.g., ref. [5].) Hence, orbits forward-asymptotic in time to any perturbed two-fre-
quency quasiperiodic solution still form a smooth four-dimensional surface, which is O(¢) close to the un-
perturbed homoclinic surface. This surface is called the stable manifold of the perturbed two-frequency quasi-
periodic solution. Likewise, orbits backward-asymptotic to a two-frequency quasiperiodic solution form its
smooth four-dimensional unstable manifold.

If the two-mode system were to remain integrable under the weak coupling, then the stable and unstable
manifolds of the hyperbolic quasiperiodic solution would continue to coincide, as a slightly deformed four-
dimensional homoclinic surface. However, when, as expected, the coupling perturbation destroys integrability,
the stable and unstable manifolds will, in general, intersect. These intersections are the homoclinic orbits of
the hyperbolic solution that survive after the coupling. These homoclinic intersection orbits form two-dimen-
sional surfaces, since they are the intersections of four-dimensional stable and unstable manifolds in the six-
dimensional simultaneous level surfaces (lying in the eight-dimensional phase space) of the total unitarity H
and self-interaction energy J.

5. Showing transverse intersections

In order to show that homoclinic intersections occur under weak coupling of the two modes, we use the stan-
dard Melnikov method [5,6]. Application of this method requires the computation of the distance between
perturbed stable and unstable manifolds of the hyperbolic solutions, to first order in e. This first-order distance
is given by a vector having two components measured along two of the normal directions to the unperturbed
homoclinic surface. For these directions we choose VH, and V.J,, the eight-component gradients in the full phase
space of the conserved quantities for the unperturbed first mode. Only two normal directions (out of the ex-
isting four) are needed, because both the perturbed stable and unstable manifolds of the hyperbolic solution
lie on level surfaces of total H and total J (see refs. [4,5]). These two components of the required first-order
distance are given by
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M, = jVH-gdt, M, = J‘ VJ,-gde,

—~ 0o —ao

where the integrals are taken along a particular unperturbed homoclinic orbit of mode I, and the eight-com-
ponent vector g is the linearization in € of the perturbed flow. In terms of the field, we have

M= [ S 2mnl (K= 47| En ) Re(E3P)) — b Re(E, EAETP))]
My= [ AT 2K =ym | B ) Im(ETE,)

— o0

where E,, is evaluated at 1—¢,, and ¢,, along the unperturbed homoclinic and quasiperiodic solutions.

In order to compute the Melnikov vector components (M,, M,), we begin by considering the unperturbed
motion in the (2,, %) phase plane of the second mode and linearizing this motion in the vicinity of the center
at 2,=0, and #,=0. This linearized solution undergoes Aarmonic motion in the ( 2,, %) phase plane. In the
full phase space, these harmonic motions are given in terms of the complex envelope field variables (E,, P,)
by

E,={Q,+A4;c08[R2(t—1,) ] — (2iwA,/Q) sin[Q(t—1,) ]} exp[iw(t—1t,) +iF,] ,
P ={i0, 0+ (4,/R2) 2w?—2?) sin[Q(t—1,) | —id,w cos[Q(t—1,) ]} exp[iw(1—1t,) +i,] ,

where we denote w=J,/03, 2°=y303%+4w?, and ¢, and @, are constant parameters.

Substituting into the integrands of the Melnikov vector the expressions for the unperturbed homoclinic mode-
1 solution (E,, P,) given earlier and the linearized quasiperiodic mode-2 solution (E,, P,) given above yields,
after considerable algebra and evaluation of integrals,

M, =a, sin(wAt—-Ag)+a, sin[ (2+w) At— Ag]+a; sin[ (Q—w) At— Ag] +a, sin(Q At) ,
M,=b, sin(w At—A@) + b, sin[ (2+w) At— A@g] +b; sin[ (2—w) At—Ag] ,

where At=t,—1,, Ap=@, —@,, and the coefficients @; and b; are given below,

T 5 Tw K 3w? _
a,=— wsech(—-—)[lK (1+_LA __)_ 24 ]’
1= O, 2JK., 3K KTk 7 Y2034,

_mho(, 0 "(w-9)> : (l 9)( K 3(“’-9)2) (3 9) ]
2= (1 w)sech(z /LG te/\It kA3t g) A

Fig. 2. The weak-coupling perturbation causes transverse inter-

> sections of the stable and unstable manifolds of the homoclinic
X h —— solutions to occur near Az=0 and A¢=0, or n. A typical orbit
1&3; near these transverse intersections switches randomly from side

to side in the vicinity of the homoclinic periodic orbit and near
the plane containing Ag=0 and Ag=mn.
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%2 Q <n(w+[2)>[l (l 9>( K 3(w+9)2) (3 w)

a= 7 <1+ w)seCh 2K 5K, 370 1+ K K7, A2 —72 270 Ay |,
2rA ) 7,822

Ay = — 2 (A122+ y_lAnz ) & 5
N 72 71
BB e ) [ (20 5+ (- 55) |

b, = 4 2K, + +4 K

1 \/Kn}’n 112 1+ " 122\ 85— 202

__mty (-Q) (w—9)2> -z]
by =— . (2\/71}', )( )[A112(2K1+ ” +412:(K; —7:03) |,

2nd, (n(w+9)>(1 w)[ ( (w+9)2) - ]
by=— hi ——=1]|4 2K+ ——— ) +4,5.(K; — 1.
3 " sec 2\/K1y1 270 112 1 " 122(K; — 7. 03%)

The Melnikov vector components M, and M, have simultaneous zeros, when At=0 and Ag=0, or . (Since
the Jacobian (0M,, dM,)/(0At, A¢) is nonvanishing, these Melnikov zeros are simple.) Hence, the conse-
quence of coupling small-amplitude oscillations of mode 2 to mode 1 is to produce transverse intersections of
the stable and unstable manifolds of the hyperbolic quasiperiodic solutions of the coupled system. These trans-
verse intersections are sketched in fig. 2. The formulas for M, and M, show that the transverse intersections
caused by mode coupling are two-dimensional and parameterized either by ¢—¢, and @,, or, equivalently, by
t—t, and @,. As shown in the next section, these transverse intersections imply chaotic dynamics for phase
points in their vicinity via a Smale horseshoe construction.

6. Generalized Smale horseshoe construction

We consider the Poincaré map ¢ obtained by taking a Poincaré section at ¢ —7,=0, modulo 2x. In the ¢,-
reduced phase space (2,, %) for the linearized harmonic mode-2 motion, this Poincaré section is the positive
42, axis. In the Poincaré section the quasiperiodic mode-2 solution is a circle, and the Poincaré map @ takes
this circle into itself. This circle is hyperbolic in the phase space for the coupled system and, according to the
Melnikov calculation just given, its stable and unstable manifolds intersect transversely. These transverse in-
tersections are two-dimensional surfaces in the continuous-time dynamics, and in our Poincaré section they
are circles (rather than points, as in the usual Poincaré section). The angle parameterizing each intersection
circle in the Poincaré section is @,, or, equivalently, ¢, the angle conjugate to the total interaction energy, J,,;.
Because J,,, is conserved, the dynamics for ¢ decouples from the rest of the system and may now be factored
out by Hamiltonian reduction. The transverse intersections on the resulting reduced Poincaré section form the
usual homoclinic tangle of points, as guaranteed by the Poincaré-Birkhoff-Smale theorem. That is, an iterate
of the reduced Poincaré map results in a Smale horseshoe construction, thereby leading to an invariant Cantor
set of points in the reduced Poincaré section on which the dynamics is topologically conjugate to a Bernoulli
shift [5,6]. Adding back the angle ¢ now yields an invariant Cantor set of circles, whose dynamics under the
reconstructed Poincaré map is extremely sensitive to initial conditions.

7. Physical implications

Given that the dynamics in the vicinity of the homoclinic tangle is chaotic, what implications are there for
ring-cavity laser experiments? For phase points in the vicinity of the homoclinic tangle, the time series for the
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amplitude of the first mode | E,| will show intermittent excursions away from zero in the form of the ho-
moclinic solution,

|E\ 1 =2 /K\/7: sech[ /K,y (t=1,)],

where ¢, is now indistinguishable from a random variable, because of the extreme sensitivity to initial con-
ditions for this motion. These intermittent bursts in the first mode will interfere with the quasiperiodic evo-
lution of the second mode, in the total output intensity of the laser,

|EI?=|E (1) A(r, 6, 2) + E5(1) 45(r, 6, 2) |,

where A,(r, 8, z) and A4,(r, 6, z) represent the two transverse spatial patterns of the competing degenerate
cavity modes. Hence the resulting transverse spatial pattern of the total resulting laser output will show a cha-
otic sequence of bursts of interference. During these bursts, the transverse output will appear spatially complex.
Thus an effect which might appear to be spatio-temporal chaos is actually due to temporal chaos alone, arising
from the competition between two degenerate spatial modes.
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